
Movement tutorial
This is a tutorial for beginners. It walks you through the steps of creating a player
controlled space ship that moves in a natural manner when you give keyboard
input. After having completed this tutorial you will know the answers to the
following questions:

•What are vectors?
•How can you use vectors to represent positions, velocity and acceleration?
•How do you use this to create a game embryo that you can experiment with
and develop further?

It is assumed that you have basic understanding of physics concepts such as velocity
and acceleration. You will also need some basic understanding of Lua programming.

This project is prepared in advance for you so there is no setup to bother about. Run
the game to get an overview of what you have to work with:

•It include graphics: an animated spaceship and a background.
•Input is set up for arrow keys and mouse clicks.
•There is a "spaceship" game object that has a script attached to it.
•The script has code in place to react to player input. Initially, it only prints
messages to the console as a reaction to input.

With the game running, try pressing the arrow buttons, or click in the game window,
then check the editor console for input results. Notice that different text is printed
in the console depending on which button you pressed:

defold://build
defold://build

Making the spaceship move
Before digging into any details, let's first make a simple experiment and give the
spaceship motion.

Open "spaceship.script" and scroll down to the beginning of the
function on_input() where you find this code:

function on_input(self, action_id, action)
 if action_id == hash("up") then
 print("UP!")
 elseif...

Remove the line with the statement print("UP!") and edit the code so the beginning
of the function instead looks like this:

function on_input(self, action_id, action)
 if action_id == hash("up") then
 local p = go.get_position()
 p.y = p.y + 1
 go.set_position(p)
 elseif...

Run the game again and press the up arrow key and see how the spaceship moves
up. The code is very simple, but let's look at it line by line to get a proper idea of
what's going on:

if action_id == hash("up") then

defold://build
defold://open?path=/main/spaceship.script

The input bindings that are set up in the project (in the
file "/input/game.input_binding") binds each of the arrow keys to action named
"up", "down", "left" and "right". The game runs at 60 frames per second and each
frame you push up, the hashed "up" action name is sent to the on_input() function.
Holding the button down will thus make the code between the ifstatement and the
first elseif execute 60 times each second.

local p = go.get_position()

The function go.get_position() gets the position of a game object. Since the function
is called without any arguments, the position of the current game object is
returned. This code belongs to the spaceship game object so the position of the
spaceship is returned.

The position is assigned to a local variable called p so it is possible to manipulate it.
The position object is a vector3, which is a vector that holds three values.

p.y = p.y + 1

The vector3 object in p describes a point in 3D space, consisting of an X coordinate,
an Y coordinate and a Z coordinate. Since pressing the up button should move the
ship in the positive direction of the Y axis, the y component of the position is
increased by 1.

go.set_position(p)

Finally, the new changed position value is written back to the current game object.

Before moving on, try changing the value added to p.y from 1 to 5 and run the game
again. Notice how the ship now moves much faster.

Finally, add a line below go.set_position(p) to print the value of p:

function on_input(self, action_id, action)
 if action_id == hash("up") then
 local p = go.get_position()
 p.y = p.y + 5
 go.set_position(p)
 print(p)
 elseif...

defold://build
defold://build
https://en.wikipedia.org/wiki/Hash_function
defold://open?path=/input/game.input_binding

Run the game again and see how the engine print the value of the position vector
each frame. Notice that the second value of the vector changes as the spaceship
moves:

...
DEBUG:SCRIPT: vmath.vector3(640, 460, 0)
DEBUG:SCRIPT: vmath.vector3(640, 465, 0)
DEBUG:SCRIPT: vmath.vector3(640, 470, 0)
DEBUG:SCRIPT: vmath.vector3(640, 475, 0)
...

Vectors
A vector is a mathematical entity that has a direction and a magnitude (length). A
vector describes a specific point in a vector space. In practice, a vector consists of a
set of numbers that give the coordinates to the point. In a two dimensional space (a
plane), two numbers are necessary to describe vectors: one value for the X axis and
one for the Y axis:

In a three dimensional space, you need three numbers: one for the X axis, one for
the Y axis and one for the Z axis:

defold://build

The magnitude, or length, of a vector v is calculated using the Pythagorean
theorum:

A vector with magnitude 1 is called a normalized vector.

Even though Defold has a toolset tailored for 2D games, the engine is truly a 3D
engine. All game objects and components are positioned in 3D space with positions
expressed as vector3objects. When you view your game in 2D, the X and Y value
determine the position of an object along the "width" and "height" axis, and the Z
position determines the position along the "depth" axis. The Z position allows you
to control the visibility of overlapping objects: a sprite with a Z value of 1 will
appear in front of a sprite at Z position 0. By default, Defold uses a coordinate
system allowing Z values between -1 and 1:

The Defold Lua library vmath contains functions to create and
manipulate vector3 objects:

-- create a new vector3 at X position 100 and Y position 350.
local position = vmath.vector3(100, 350, 0)

-- set the position of game object "player" to the new vector.
go.set_position(position, "player")

Vectors in higher dimensions than 3 are also possible. Defold uses vector4 objects
with four components to encode colors. The first three components give the amount
of red, green, and blue, and the last component give the amount of translucency,
also called "alpha".

In everyday life you are used to do arithmetic with scalar values, real numbers that
describe points on the number line. We use scalars to mean many different things.
The number 12 could mean a number of meters, kilograms, pounds, seconds,
meters per second, volts or dollars. The same is true for vectors. You have already
seen how vectors can be used to describe a position of an object. They are also very
good for describing an object's motion through space.

https://defold.com/ref/vmath/#vmath.vector3
https://defold.com/ref/vmath

To describe motion on a computer screen (a 2D plane) you need two values: The
speed along the X axis and the speed along the Y axis. You can very well use two
separate scalar values and add the speed values to the X and Y positions separately:

position_x = position_x + speed_x * elapsed_seconds
position_y = position_y + speed_y * elapsed_seconds

This is roughly what you did when you previously made the spaceship move
upwards, and there is nothing wrong calculating motion like this. Vectors, however,
allow you to express motion clearer and more concise. Since a vector describe
a direction and a magnitude they are an intuitive fit for motion: the direction of the
vector equals the direction of motion, and the magnitude describes the amount of
motion:

position = position + speed * elapsed_seconds

As long as the position and speed values are expressed as vectors in the same space
you can add and subtract them, and scale them by multiplying them with scalar
values. These operations are a central part of vector algebra.

Vector algebra
Vector algebra defines mathematical operations on vectors. Beginning with the
simplest, negation, addition and subtraction.

Negation : Negating a vector v, denoted by -v, negates each component of the
vector. This makes a vector that points in the opposite direction of the original
vector, with the same magnitude:

Addition : Adding vector u to vector v, denoted by u + v, adds each component
of u to v. The result is a new vector:

Vectors are often drawn displaced from the coordinate system which brings clarity
to the operations:

Subtraction : Subtracting vector v from vector u, denoted by u - v, is equal to adding
the negation of v to u. So u - v = u + (-v):

Multiplication with scalar : Multiplying a vector v with a real number r produces a
new vector with the magnitude scaled: the vector is streched out by a factor r.
Multiplying with a negative r flips the orientation 180 degrees:

These were the basic operations on vectors that you will use all the time. In
addition, there are two special operations that come in handy if you, for instance,
want to check if two vectors are parallell or at right angles of each other:

Dot product : The dot product of two vectors u and v, denoted by u ∙ v, is a scalar
value. It is defined as:

•‖u‖ is the magnitude of vector u.
•‖v‖ is the magnitude of vector v.
•θ is the angle between the vectors.

If the vectors are orthogonal (the angle between them is 90 degrees), then the dot
product is zero.

Cross product : The cross product of two vectors u and v, denoted by u × v, is a
vector that is perpendicular to both u and v:

The resulting vector is a zero vector if:

•Either one or both of the input vectors are zero vectors, (u = 0 or v = 0)
•The two input vectors are parallel (θ = 0°)
•The two input vectors are antiparallel (θ = 180°)

Creating movement with vectors
Using vector algebra, you can now rewrite the spaceship's movement in a
straightforward way.

Open "spaceship.script" and modify the init(), update() and on_input() functions:

function init(self)
 msg.post(".", "acquire_input_focus")
 self.input = vmath.vector3() -- [1]
end

1.Create a new zero vector3 for storing the input direction. It is placed it in the
current script instance (self) so it can be used throughout the lifetime of the
spaceship game object.

function update(self, dt)
 local movement = self.input * 3 -- [1]
 local p = go.get_position() -- [2]
 go.set_position(p + movement) -- [3]
 self.input = vmath.vector3() -- [4]
end

1.Calculate a movement vector based on the player's input vector.

defold://open?path=/main/spaceship.script

2.Retrieve the position of the current game object (the spaceship). The
position is a vector3.
3.Set the position of the current game object to p plus the movement vector.
4.Zero the input vector. The on_input() function is called each frame
before update() and has the responsibility to set the input vector.

function on_input(self, action_id, action)
 if action_id == hash("up") then
 self.input.y = 1 -- [1]
 elseif action_id == hash("down") then
 self.input.y = -1 -- [1]
 elseif action_id == hash("left") then
 self.input.x = -1 -- [1]
 elseif action_id == hash("right") then
 self.input.x = 1 -- [1]
 elseif action_id == hash("click") and action.pressed then
 print("CLICK!")
 end
end

1.Set the x or y component of the input vector depending on player input. If
the player presses up and left at the same time, the function will be called
twice and both components are set, resulting in a diagonal input direction.

There are two issues with this code:

First, the input vector has length 1 if you move vertically or horizontally, but
diagonally the length is 1.4142 (square root of 2) so diagonal movement is faster.
You probably don't want that.

Second, the units of velocity is expressed in pixels/frame, no matter the frame
length. It's set to 3 pixels of movement each frame (or about 4.2 diagonally). To
make the ship go faster, change the 3 to a higher value. If you want it to go slower,
decrease the value. It would be better if you could express velocity in pixels/second.

The first problem is easy to fix, just normalize the input vector so the input length is
always 1:

function update(self, dt)
 if vmath.length_sqr(self.input) > 1 then -- [1]
 self.input = vmath.normalize(self.input)
 end
 local movement = self.input * 3
 local p = go.get_position()
 go.set_position(p + movement)
 self.input = vmath.vector3()
end

1.If the squared length of the input vector is larger than 1, normalize the
vector so it is of magnitude 1. Compare against square length since it's faster
than comparing against length.

The second problem requires the use of a time step value.

Time step
Each frame the Defold engine calls the update() function of each script. A Defold
game usually runs at 60 frames per second, so each frame is 0.016666 seconds long.
That is the time elapsed between each call to update(). A velocity vector with a
magnitude of 3 will then represent a speed of 3 * 60 = 180 pixels per second (with
the regular render script), as long as there really are 60 frames each second. What
would happen if there, for whatever reason, is a hitch in the framerate? With the
current code movement will be uneven and unpredictable.

Working with pixels per second allows you to use variable framerate properly, you
would also be able to measure your game with a stopwatch and reason about
distances and timings in a better way.

Defold provides a time step argument value to the update() function. The argument
is usually called dt (for "delta time") and its value is the number of seconds that
elapsed since the last frame. If you scale velocity against dt you will get proper
units:

function update(self, dt)
 if vmath.length_sqr(self.input) > 1 then
 self.input = vmath.normalize(self.input)
 end
 local movement = self.input * 150 * dt -- [1]
 local p = go.get_position()
 go.set_position(p + movement)
 self.input = vmath.vector3()
end

1.The velocity is now 150 pixels per second. The screen is 1280 pixels wide so
it should take the ship 8.53 seconds to fly across. You can check that with a
stopwatch.

Run the game again and try the movement code. At this stage it works but it's stiff
and not very dynamic. To give a sense of weight to the spaceship a good way is to

defold://build

have the player's input control movement by altering acceleration instead of the
velocity.

Acceleration
In the above code, velocity was set to a constant value, meaning that the resulting
movement, or translation, of the velocity acting over the time step (dt) could be
calculated by multiplying the velocity with the time step: movement = velocity * dt,
or the orange area in the following diagram:

Acceleration defines how fast something changes speed and direction. The
acceleration is acting over the frame time step (dt) and then added to the velocity.
The velocity acts over the frame and the resulting movement is added to the
position. Since velocity changes over time the movement has to be calculated as the
area under a curve. In maths, this is called integration over time.

http://en.wikipedia.org/wiki/Integral

With a small enough time step a good geometric approximation of the area can be
calculated by assuming that the acceleration acting between v0 and v1 is constant,
meaning that the velocity changes linearly between the two points. By that
assumption v1 can be calculated as v0 + acceleration * dt and the resulting
movement becomes:

You can now write the final code for init() and update() (the code for on_input() is
kept as is):

function init(self)
 msg.post(".", "acquire_input_focus")
 self.velocity = vmath.vector3() -- [1]
 self.input = vmath.vector3()
end

function update(self, dt)
 if vmath.length_sqr(self.input) > 1 then
 self.input = vmath.normalize(self.input)
 end

 local acceleration = self.input * 200 -- [2]

 local dv = acceleration * dt -- [3]
 local v0 = self.velocity -- [4]
 local v1 = self.velocity + dv -- [5]
 local movement = (v0 + v1) * dt * 0.5 -- [6]

 local p = go.get_position()
 go.set_position(p + movement) -- [7]

 self.velocity = v1 -- [8]
 self.input = vmath.vector3()
end

1.Create a vector for storing velocity over time.
2.Acceleration is set to 200 pixels per second in the direction of player input.
3.Calculate change of velocity this time step.
4.v0 is set to the velocity from the previous time step.
5.v1 is v0 plus the change of velocity this time step.
6.Calculate how much the ship shall move this time step.
7.Apply the change in position.
8.Store the v1 velocity so it can be used in next time step.

Now it's time to take your new heavy spaceship for a spin.

Congratulations! You have completed the tutorial. But don't stop here. to continue
experimenting with the code.

Here are some ideas what you can try:

1.Put a cap on the velocity.
2.Make the spaceship bounce off the edges of the screen.
3.Allow mouse clicks to dictate the input direction.

Check out the documentation pages for more examples, tutorials, manuals and API
docs.

If you run into trouble, help is available in our forum.

Happy Defolding!

This project is released under the Creative Commons CC0 1.0 Universal license.

You’re free to use these assets in any project, personal or commercial. There’s no
need to ask permission before using these. Giving attribution is not required, but is
greatly appreciated! Full license text

https://creativecommons.org/publicdomain/zero/1.0
https://forum.defold.com/
https://defold.com/learn
defold://build

	Movement tutorial
	Making the spaceship move
	Vectors
	Vector algebra
	Creating movement with vectors
	Time step
	Acceleration

